Transcriptional bursting in Drosophila development: Stochastic dynamics of eve stripe 2 expression
نویسندگان
چکیده
Anterior-posterior (AP) body segmentation of the fruit fly (Drosophila) is first seen in the 7-stripe spatial expression patterns of the pair-rule genes, which regulate downstream genes determining specific segment identities. Regulation of pair-rule expression has been extensively studied for the even-skipped (eve) gene. Recent live imaging, of a reporter for the 2nd eve stripe, has demonstrated the stochastic nature of this process, with 'bursts' in the number of RNA transcripts being made over time. We developed a stochastic model of the spatial and temporal expression of eve stripe 2 (binding by transcriptional activators (Bicoid and Hunchback proteins) and repressors (Giant and Krüppel proteins), transcriptional initiation and termination; with all rate parameters constrained by features of the experimental data) in order to analyze the noisy experimental time series and test hypotheses for how eve transcription is regulated. These include whether eve transcription is simply OFF or ON, with a single ON rate, or whether it proceeds by a more complex mechanism, with multiple ON rates. We find that both mechanisms can produce long (multi-minute) RNA bursts, but that the short-time (minute-to-minute) statistics of the data is indicative of eve being transcribed with at least two distinct ON rates, consistent with data on the joint activation of eve by Bicoid and Hunchback. We also predict distinct statistical signatures for cases in which eve is repressed (e.g. along the edges of the stripe) vs. cases in which activation is reduced (e.g. by mutagenesis of transcription factor binding sites). Fundamental developmental processes such as gene transcription are intrinsically noisy; our approach presents a new way to quantify and analyze time series data during developmental patterning in order to understand regulatory mechanisms and how they propagate noise and impact embryonic robustness.
منابع مشابه
Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos.
We present the use of recently developed live imaging methods to examine the dynamic regulation of even-skipped (eve) stripe 2 expression in the precellular Drosophila embryo. Nascent transcripts were visualized via MS2 RNA stem loops. The eve stripe 2 transgene exhibits a highly dynamic pattern of de novo transcription, beginning with a broad domain of expression during nuclear cycle 12 (nc12)...
متن کاملThe eve stripe 2 enhancer employs multiple modes of transcriptional synergy.
Previous studies have provided a detailed model for the regulation of even-skipped (eve) stripe 2 expression in the Drosophila embryo. The bicoid (bcd) regulatory gradient triggers the expression of hunchback (hb); these work synergistically to activate the stripe in the anterior half of the embryo, bcd also coordinates the expression of two repressors, giant (gt) and Kruppel (Kr), which define...
متن کاملFunctional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change.
Experimental investigations of eukaryotic enhancers suggest that multiple binding sites and trans-acting regulatory factors are often required for wild-type enhancer function. Genetic analysis of the stripe 2 enhancer of even-skipped (eve), an important developmental gene in Drosophila, provides support for this view. Given the importance of even-skipped expression in early Drosophila developme...
متن کاملTranscriptional regulation of a pair-rule stripe in Drosophila.
The periodic, seven-stripe pattern of the primary pair-rule gene even-skipped (eve) is initiated by crude, overlapping gradients of maternal and gap gene proteins in the early Drosophila embryo. Previous genetic studies suggest that one of the stripes, stripe 2, is initiated by the maternal morphogen bicoid (bcd) and the gap protein hunchback (hb), while the borders of the stripe are formed by ...
متن کاملRepression activity of Tailless on h 1 and eve 1 pair-rule stripes
We investigated the hypothesis that several transcriptional repressors are necessary to set the boundaries of anterior pair-rule stripes in Drosophila. Specifically, we tested whether Tailless (Tll) is part of a repression mechanism that correctly sets the anterior boundaries of hairy 1 (h 1) and even-skipped 1 (eve 1) stripes. Single mutant tll embryos displayed subtle deviations from the norm...
متن کامل